PII: S0960-894X(97)00221-7

A SHORT AND EFFICIENT SYNTHESIS OF ZAMIFENACIN A MUSCARINIC M₃ RECEPTOR ANTAGONIST

Janine Cossy*, Cécile Dumas, Domingo Gomez Pardo*

Laboratoire de Chimie Organique, Associé au CNRS, ESPCI, 10 rue Vauquelin - 75231 PARIS Cedex France

Abstract: A short synthesis of zamifenacin is described by using a ring enlargement of a L-prolinol derivative. © 1997 Elsevier Science Ltd.

Muscarinic M_3 receptor antagonists have therapeutic potential for the treatment of disorders associated with altered smooth muscle contractility or tone. These include irritable bowel syndrome, chronic obstructive airways disease and urinary incontinence. Zamifenacin¹ [(3R)-(+)-diphenylmethoxy-1-(3,4)-methylene-dioxyphenethyl)piperidine] has been shown to antagonise selectively muscarinic M_3 receptors over muscarinic M_2 receptors in vitro² and in vivo^{3,4}, inhibiting gastrointestinal motility in dogs at doses that do not effect heart rate or pupil diameter⁵. In man, zamifenacin has been shown to inhibit small bowel and colonic motility in a dose-dependent fashion with little or no side effects⁴. Zamifenacin was in Phase III Clinical Trial⁶.

Zamifenacin

Here in, we would like to report a very short and efficient synthesis of zamifenacin starting from the commercial available L-proline methyl ester (-)-1 (ee = 98%) and 1,3-benzodioxole-5-acetic acid.

Conversion of the commercially available 1,3-benzodioxole-5-acetic acid to the acid chloride **2** by treatment of the acid with oxalyl chloride⁷, followed by addition of the L-proline methyl ester in the presence of NEt₃ gave the amido derivative **3** in good yield (64%). The reduction compound of **3** with LiAlH₄ in THF afforded the prolinol derivative (-)-**4**⁸ quantitatively. Treatment of prolinol (-)-**4** with trifluoroacetic anhydride in THF followed by the addition of NEt₃ and then by the addition of an aqueous solution of NaOH (3.75 M)⁹ gave piperidin-3-ol (-)-**5**¹⁰ (yield = 67%; $[\alpha]_D^{20} = -1$, c = 0.68, EtOH). Piperidin-3-ol (-)-**5** was then heated neat at 100 °C with diphenyl methyl chloride to produce, after 2h, zamifenacin¹¹ (yield = 48%; ee > 90%¹²; $[\alpha]_D^{20} = +20$, c = 0.26, EtOH).

Zamifenacin was synthesized from L-proline methyl ester in 4 steps with an overall yield of 20% by using a ring enlargement of a L-proline derivative.

Fax: 33.1.40.79.44.25; E-mail: janine.cossy@espci.fr

1344 J. Cossy et al.

Scheme: Synthesis of zamifenacin from L-proline methyl ester.

REFERENCES AND NOTES

- Alker, D.; Cross, P. E.; Wallis, R. M. (Pfizer Ltd., Pfizer Inc.) Eur. Pat. Appl. EP 350 309, 1990, Chem. Abstr. 1990, 112, 235186k
- 2. Wallis, R. M.; Alker, D.; Burges, R. A.; Cross, P. E.; Newgreen, D. T.; Quinn, P. Br. J. Pharmacol. 1993, 109, 36P.
- 3. Quinn, P.; Miner, W. D.; Wallis, R. M. Br. J. Pharmacol. 1993, 109, 37P.
- 4. Wallis, R. M. Life Sci. 1995, 56, 861-868.
- 5. McRitchie, B.; Merner, P. A.; Dodd, M. G. Br. J. Pharmacol. 1993, 109, 38P.
- 6. Beaumont, K. C.; Causey, A. G.; Coates, P. E.; Smith, D. A. Xenobiotica 1996, 26, 459-471.
- 7. Szmuskovicz, J. J. Org. Chem. 1964, 29, 843-847.
- 8. (-)-4: $\left[\alpha\right]_{D}^{20} = -15$ (c = 0.87, EtOH). IR (NaCl): 3380, 1610, 1500, 1485, 1440, 1250, 1035 cm⁻¹. NMR ¹H (300 MHz, CDCl₃) &: 1.47-1.78 (m, 4H), 2.14 (dt, 2J =9.0 Hz, 3J =9.0 Hz, 1H), 2.26-2.61 (m, 5H), 2.72 (dt, 2J =11.2 Hz, 3J =9.0 Hz, 1H), 3.01-3.08 (m, 1H), 3.14 (dd, 2J =9.9 Hz, 3J =2.7 Hz, 1H), 3.37 (dd, 2J =9.9 Hz, 3J =4.0 Hz, 1H), 5.71 (s, 2H), 6.41-6.57 (m, 3H). NMR ¹³C (75 MHz, CDCl₃) &: 22.5 (CH₂), 27.5 (CH₂), 35.2 (CH₂). 54.0 (CH₂), 56.1 (CH₂), 61.7 (CH₂), 67.8 (CH), 100.6 (CH₂), 108.0 (CH), 108.9 (CH), 121.2 (CH), 134.0 (C), 145.6 (C), 147.4 (C). MS (EI, 70 eV) mz: 249 (M**, 0.1), 218 (8), 149 (13), 135 (4), 114 (100).
- 9. Cossy, J.; Dumas, C.; Michel, P.; Gomez Pardo, D. Tetrahedron Lett. 1995, 36, 549-552.
- 10. (-)-5: $[\alpha]_D^{20} = -1$ (c = 0.68, EtOH). IR (NaCl) v: 3360, 1505, 1445, 1250 cm⁻¹. NMR ¹H (300 MHz, CDCl₃) &:1.41-1.85 (m, 3H), 1.91-2.08 (m, 1H), 2.72-3.04 (m, 8H), 3.98 (m, 1H), 5.88 (s, 2H), 6.60-6.75 (m, 3H). NMR ¹³C (75 MHz, CDCl₃) &: 21.8 (CH₂), 31.9 (CH₂), 33.1 (CH₂), 53.5 (CH₂), 60.4 (2CH₂), 66.2 (CH), 100.7 (CH₂), 108.1 (CH), 109.0 (CH), 121.3 (CH), 134.0 (C), 145.7 (C), 147.5 (C). MS (EI, 70 eV) m/z: 249 (M⁻⁺, 1), 232 (2), 210 (100), 135 (4), 96 (16).
- 2amifenacin: $[\alpha]_D^{20} = +20 \ (c = 0.26, EtOH)$, [ref. 1: $[\alpha]_D^{20} = +22.5 \ (c = 1.5, EtOH)$]. IR (NaCl): 1505, 1490, 1250 cm⁻¹. NMR ¹H (300 MHz, CDCl₃) &: 1.29-1.58 (m, 3H), 1.74-1.80 (m, 1H), 1.98-2.14 (m, 2H), 2.55-2.61 (m, 2H), 2.69-2.73 (m, 2H), 2.81 (dd, ²/=11.0 Hz, ³/=1.1 Hz, 1H), 3.11 (dd, ²/=10.5 Hz, ³/=3.9 Hz, 1H), 3.54-3.63 (m, 1H), 5.58 (s, 1H), 5.94 (s, 2H), 6.63-6.76 (m, 3H), 7.26-7.37 (m, 10H). NMR ³C (75 MHz, CDCl₃) &: 23.4 (CH₂), 30.7 (CH₂), 33.1 (CH₂), 53.3 (CH₂), 58.6 (CH₂), 60.7 (CH₂), 64.2 (CH), 79.9 (CH), 100.7 (CH₂), 108.1 (CH), 109.1 (CH), 121.4 (CH), 127.1 (CH), 127.4 (CH), 128.0 (2CH), 128.2 (2CH), 128.3 (2CH), 128.4 (2CH), 134.1 (C), 141.0 (C), 142.6 (C), 145.7 (C), 147.5 (C). MS (EI, 70 eV) m/z: 415 (M**, 0.1), 280 (4), 168 (14), 167 (100), 165 (8), 152 (5).
- 12. We have previously shown that the ring enlargement occurs with no racemization, see ref. 9.